Project Dell NVIDIA AMD

Explaining the A of DNA

Tim Carlson, Dell AMD Lead

Dell PowerEdge AMD 4th Gen EPYC[™] Performance

- 50% more cores
 Up to 121% increased performance
 Up to 55% CPU Performance per Watt improvements
- Up to 60% more storage

INDUSTRY LEADING OPTIMIZED SILICON

AMD EPYC[™] 9004 PROCESSORS – "GENOA"

world's highest performance x86 CPU*

◎ AMD Inc | All Rights Reserved MD EPYC™ 9004 CPU Sales Training | NDA Only

* Projected performance based on AMD internal testing and subject to change. ** with 256GB DIMMs and 2DPC in a 2P server

EXTENDING COMPUTE LEADERSHIP

Leadership Socket and Per-Core Performance Up to 96 "Zen 4" Cores in 5nm

Leadership Memory Bandwidth and Capacity 12 Channels DDR5 with up To 12TB of memory capacity**

Next Generation I/O PCIe® Gen 5 – 128 Ianes + Memory Expansion with CXL

Advances in Confidential Computing Memory Encryption | Direct and CXL Attached

See endnotes: SP5-001

AMD EPYC[™] 9004 "GENOA" - AT A GLANCE

COMPUTE

- AMD "Zen4" x86 cores (Up to 12 CCDs / 96 cores / 192 threads)
- 1MB L2/Core, Up to 32MB L3/CCD
- ISA updates: BFLOAT16, VNNI, AVX-512 (256b data path)
- Memory addressability with 57b/52b Virtual/Physical Address
- Updated IOD and internal AMD Gen3 Infinity Fabric[™] architecture with increased die-to-die bandwidth
- Target TDP range: Up to 400W (cTDP)
- Updated RAS

MEMORY

- 12 channel DDR5 with ECC up to 4800 MHz
- Option for 2,4,6, 8, 10, 12 channel memory interleaving¹
- RDIMM, 3DS RDIMM
- Up to 2 DIMMs/channel capacity with up to 12TB in a 2 socket system (2DPC, 256GB 3DS RDIMMs)¹

BLUE font indicates significant upgrades with EPYC 9004.

SP5 PLATFORM

- · New socket, increased power delivery and VR
- Up to 4 links of Gen3 AMD Infinity Fabric[™] with speeds of up to 32Gbps
- Flexible topology options
- Server Controller Hub (USB, UART, SPI, I2C, etc.)

INTEGRATED I/O - NO CHIPSET

Up to 160 IO lanes (2P) of PCIe® Gen5

- Speeds up to 32Gbps, bifurcations supported down to x1
- Up to 12 bonus PCIe Gen3 lanes in 2P config (8 lanes-1P)
- Up to 32 IO lanes for SATA
- SDCI (Smart Data Cache Injection) *
- 64 IO Lanes support for CXL1.1+ with bifurcations supported down to x4

SECURITY FEATURES

- Dedicated Security Subsystem with enhancements
- Secure Boot, Hardware Root-of-Trust
- SME (Secure Memory Encryption)
- SEV-ES (Secure Encrypted Virtualization & Register Encryption)

SEV-SNP (Secure Nested Paging), AES-256-XTS with more encrypted VMs

AMD EPYC[™] 9004 CPU MODELS

ALL-IN F	EATURE SET
INC	CLUDES

- 12 Channels of DDR5-4800
- 6TB memory capacity
- 128 lanes PCle[®]5
- 64 I/O Lanes Support CXL[™]
 1.1
- 32gbps AMD Gen 3 Infinity Fabric[™]
- Flexible Topology Options
- Secure Memory Encryption*
- Secure Encrypted Virtualization*

	Workload Examples			
9654/P	HPC, Cloud, VM Density			
9634	Cost sensitive HPC-perf/watt optimize			
9554/P	HPC/VM-perf/thread optimized			
9534	HPC/VM-perf/watt optimized			
9474F	Technical Computing/Cloud			
9454/P	Storage/Cloud			
9374F	Technical Computing			
9354/P	VM-cache/core ration optimized			
9334	VM-per watt optimized			
9274F	Technical Computing			
9254	Heart of Enterprise			
9224	Value Enterprise			
9174F	Technical Computing			
9124	Value Enterprise			
	 ▲▲▷ ▲▲▷ ●654/P ●634 ●554/P ●534 ●474F ●454/P ●374F ●354/P ●334 ●274F ●254 ●224 ●174F ●124 			

Advancing AMD EPYC[™] CPU Leadership

HPC PERFORMANCE LEADERSHIP FASTER TIME-TO-SOLUTIONS

EPIC PERFORMANCE TO FIT YOUR NEEDS

2P 4th Gen AMD EPYC[™] CPU estimates. Best performing 2x Intel Xeon Platinum processors published at <u>www.spec.org</u> as of 8/22/22. 3rd Gen Intel Xeon URLs: 2x Xeon Platinum <u>8380</u>, Platinum <u>8362</u>;; See endnote SP5-023.

THE POWER OF ONE SOCKET

10,000 SPECrate®2017_int_base

© AMD Inc | All Rights Reserved AMD EPYC™ 9004 CPU Sales Training | NDA Only SPEC®, SPECrate® and SPEC CPU® are registered trademarks of the Standard Performance Evaluation Corporation, See www.spec.org for more information.

*All AMD EPYC performance scores are estimates based on AMD internal testing, Aug. 2022 on AMD reference platforms. All pricing is in USD. ¹ TCO time frame of 3-years and includes estimated costs for real estate, admin and power with power @ \$0.12/kWh with 12kW/rack and a 1.7 PUE. Software cost is not included in this analysis. 2/ Julies are for USA

lvsis based on the AMD EPYC[™] Bare Metal Server & Greenhouse Gas Emission TCO Estimation Tool - version 6.10. AMD processor pricing based on 1KU price as of Aug 2022. Intel® Xeon®

Scalable CPU data and pricing from https://ark.intel.com as of Jul 2022. All pricing is in USD.

See endnote SP5TCO-005E

Thank You

Data Center Workloads EMEA HPC & AI

HOW GPU ACCELERATION WORKS

Application Code

NVIDIA Datacentre grade GPU's

NVIDIA Data Center GPU Portfolio

	GPU	Networking Solutions	DL Training & DA	다. DL Inference	₩ Д НРС / АІ	Omniverse / Render Farms	Virtual Workstation	ر Virtual Desktop (VDI)	요요 호호 Mainstream Acceleration	Far Edge Acceleration	Al-on-5G
	H100	QTM2 SPTM4	SXM PCIE	SXM PCIE	SXM PCIE				PCIE		
Compute	A100	QTM1 SPTM3	SXM PCIE A100X	SXM PCIE	SXM PCIE A100X				PCIE A100X		A100X
	A30	SPTM3		PCIE	PCIE				PCIE		A30X
	L40	SPTM4									
Compute	A40	SPTM3									
aphics / C	A10	SPTM3		•		•			•		
5	A16	SPTM3									
n Factor Graphics	A2	SPTM3									
Small Form Compute/C	Т4	SPTM3		•							

0TM1 Qauntum-1 IB switch plus BlueField2 DPUs or ConnectX-6/6 DX SmartNICs SPTM3 Spectrum-3 ethernet switch plus Bluefield2 DPUs or ConnectX-6 /6 DX SmartNICs

QTM2 Qauntum-2 IB switch plus BlueField3 DPUs or ConnectX-7 SmartNICs

NVIDIA ADA LOVELACE

76 Billion Transistors | TSMC 4N Process | Micron G6X Memory

Ray Tracing 3rd-Gen RT Cores 200 RT TFLOPs 2X Ray-Triangle Intersection

Deep Learning 4th-Gen Tensor Cores 1,400 Tensor TFLOPs Optical Flow Accelerator

Shaders New Streaming Multiprocessor 90 Shader TFLOPs 2X Power Efficiency

NVIDIA L40

Unprecedented visual computing performance for the data center

- Next-generation CUDA Cores
- 4th generation Tensor Cores
- 3rd generation RT Cores
- 48 GB GDDR6 GPU Memory with ECC
- 300W
- Secure root of trust

NVIDIA Hopper The Engine for the World's AI Infrastructure

DATA CENTER & EDGE PRODUCTS TODAY

Expanding Workloads Drive The Need for Specialized Accelerators

NVIDIA Data Center GPU Comparison - Sept '22

	H100		A100		A30	A2	L40	A40	A10	A16
Design	Highest Perf Al, Big NLP, HPC, DA		High Perf Compute		Mainstream Compute	Entry-Level Small Footprint	Powerful Universal Graphics + Al	High Perf Graphics	Mainstream Graphics & Video with Al	High Density Virtual Desktop
Form Factor	SXM5	x16 PCle Gen5 2 Slot FHFL 3 NVLINK Bridge	SXM4	x16 PCle Gen4 2 Slot FHFL 3 NVLink Bridge	x16 PCIe Gen4 2 Slot FHFL 1 NVLink Bridge	x8 PCIe Gen4 1 Slot LP	x16 PCle Gen4 2 Slot FHFL	x16 PCle Gen4 2 Slot FHFL 1 NVLink Bridge	x16 PCle Gen4 1 slot LP	x16 PCle Gen4 2 Slot FHFL
Max Power	700W	350W	500W 300W		165W	40-60W	300W	300W	150W	250W
FP64 TC FP32 TFLOPS ²	67 67	51 51	19	.5 19.5	10 10	NA 4.5	NA TBD ³	NA 37	NA 31	NA 4x4.5
TF32 TC FP16 TC TFLOPS ²	989 1979	756 1513	31	2 624	165 330	18 36	TBD ³ TBD ³	150 300	125 250	4x18 4x36
FP8 TC INT8 TC TFLOPS/TOPS ²	3958 3958	3026 3026	NA 1248		NA 661	NA 72	TBD ³ TBD ³	NA 600	NA 500	NA 4x72
GPU Memory / Speed	80GB HBM3	80GB HBM2e	80GB HBM2e		24GB HBM2	16GB GDDR6	48GB GDDR6	48GB GDDR6	24GB GDDR6	4x 16GB GDDR6
Multi-Instance GPU (MIG)	Up 1	to 7	Up to 7		Up to 4		-	-	-	-
NVLink Connectivity	Up to 256	2	Up to 8	2	2		-	2	-	
Media Acceleration	7 JPEG Decoder 7 Video Decoder		1 JPEG Decoder 5 Video Decoder		1 JPEG Decoder 4 Video Decoder	1 Video Encoder 2 Video Decoder (+AV1 decode)	3 Video Encoder 3 Video Decoder 4 JPEG Decoder	1 Video 2 Video (+AV1	Encoder Decoder decode)	4 Video Encoder 8 Video Decoder (+AV1 decode)
Ray Tracing			-			Yes	Yes			
Transformer Engine	Ye	25	-			-		-	-	-
DPX Instructions	Ye	25		-		-		-	-	-
Graphics	For in-situ visualization (no NVIDIA vPC or RTX vWS)		(r	For in-situ visualization (no NVIDIA vPC or RTX vWS)		Good	Top-of-Line	Best	Better	Good
vGPU	Yes						Yes*		Yes	
Hardware Root of Trust	Internal and External			Internal with Option for External			Internal	Intern	al with Option for I	External
Confidential Computing	Yes		(1) -		-	-	-	-	-	-
NVIDIA AI Enterprise	Add-on	Included	Add-on			Add-on				

1. Supported on Azure NVIDIA A100 with reduced performance compared to A100 without Confidential Computing or H100 with Confidential Computing.

2. All Tensor Core numbers with sparsity. Without sparsity is ½ the value.

3. Precision TFLOP performance will be added in future update

Compute GPU's H100 / A100 / A30

NVIDIA H100 PCIE

Unprecedented Performance, Scalability, and Security for Mainstream Servers

HIGHEST AI AND HPC MAINSTREAM PERFORMANCE

3.2PF FP8 (5X)| 1.6PF FP16 (2.5X)| 800TF TF32 (2.5X)| 48TF FP64 (2.5X) 6X faster Dynamic Programming with DPX Instructions 2TB/s , 80GB HBM2e memory

HIGHEST COMPUTE ENERGY EFFICIENCY

Configurable TDP - 150W to 350W 2 Slot FHFL mainstream form factor

HIGHEST UTILIZATION EFFICIENCY AND SECURITY

7 Fully isolated & secured instances, guaranteed QoS 2nd Gen MIG | Confidential Computing

HIGHEST PERFORMING SERVER CONNECTIVITY

128GB/s PCI Gen5 600 GB/s GPU-2-GPU connectivity (5X PCIe Gen5) up to 2 GPUs with NVLink Bridge

Available today on R750, R750XA and R7525 Available soon on 16G AMD and Intel Poweredge servers

ANNOUNCING HGX-H100

The World's Most Advanced Enterprise AI Infrastructure

HIGHEST PERFORMANCE FOR AI AND HPC

4-way / 8-way H100 GPUs with 32 PetaFLOPs FP83.6 TFLOPs FP16 in-network SHARP ComputeNVIDIA Certified High-Performance Offering from All Makers

FASTEST, SCALABLE INTERCONNECT

4th Gen NVLINK with 3X faster All-Reduce communications

3.6 TB/s bisection bandwidth NVLINK Switch System Option Scales Up to 256 GPUs

SECURE COMPUTING First HGX System with Confidential Computing

NVIDIA H100 SXM5 AND PCIE

Unprecedented Performance, Scalability, and Security for Every Data Center

	H100 PCle	H100-80 SXM5	H100-94 SXM5
New Features			
- Dynamic Programming Instructions		Supported	Supported
- Confidential Computing		Supported	Supported
- Transformer Engine with FP8		Supported	Supported
- Peak FP8 Tensor TFLOPS with FP16 Accumulate	1600/3200	2000/4000	2000/4000
- Peak FP8 Tensor TFLOPS with FP32 Accumulate	1600/3200	2000/4000	2000/4000
Compute Performance enhancement		*	
- Peak FP16 Tensor TFLOPS with FP16 Accumulate	800/1600	1000/2000	1000/2000
- Peak FP16 Tensor TFLOPS with FP32 Accumulate	800/1600	1000/2000	1000/2000
- Peak BF16 Tensor TFLOPS with FP32 Accumulate	800/1600	1000/2000	1000/2000
- Peak TF32 Tensor TFLOPS	400/800	500/1000	500/1000
- Peak FP64 Tensor TFLOPS	48	60	60
- Peak INT8 Tensor TOPS	1600/3200	2000/4000	2000/4000
- Peak FP16 TFLOPS (non-Tensor)	96	120	120
- Peak BF16 TFLOPS (non-Tensor)	96	120	120
- Peak FP32 TFLOPS (non-Tensor)	48	60	60
- Peak FP64 TFLOPS (non-Tensor)	24	30	30
- Peak INT32 TOPS	24	30	30
Memory			
- Memory Interface	5120-bit HBM2e	5120-bit HBM3	6016-bit HBM2e
- Memory Size	80 GB	80 GB	94 GB
- Memory Bandwidth	2000 GB/sec	3000+ GB/sec	2400 GB/sec
L2 Cache Size	50 MB	50 MB	50 MB
TDP	350 Watts	700 Watts	700 Watts

PERFORMANCE AND POWER

H100 and A100 Tensor Core GPUs

NVIDIA H100 Supercharges LLMs

LLM Training | 4096 GPUs | H100 NDR IB | A100 HDR IB | 300 Billion tokens. P-Tuning | DGX H100 | DGX A100 | 530B Q&A tuning using SQuAD dataset Inference | chatbot | 10 DGX H100 NDR IB | 10 DGX A100 HDR IB | <1 sec latency | 1 inference/second/user. H100 data center projected workload performance, subject to change

H100 Performance Training

Performance and scalability for the next generation of AI and HPC breakthroughs

Projected performance subject to change. ESTIMATES ONLY | HPC Applications: Climate Modelling 14, LCDD 1K, Genomics 8, 3D-FFT 256, MT-NLG 32 (batch sizes: 4 for A100, 60 for H100 at 1sec, 8 for A100 and 64 for H100 at 1.5 and 2sec), MRCNN 8 (batch 32), GPT-3 16B 512 (batch 256), Training Surrogate AI Models: FourCastNet running 30 sq km spatial resolution model, Wavenet training using Keras SavedModel , Orbnet training using nys timeline for H<>D transfer, SGTC model was extracted from the PyTorch source, trained an ensemble of 10 models Comparison to DGX-A100 (Ax A100 SXM480 GB) | HPC Application ICON v2.6.5 running dataset QUBICC r2b6 40km global resolution

Versatile Compute Acceleration for Mainstream Enterprise Servers

Purpose built for Inference and Flexible Enterprise Compute

• 4X T4 Delivered Application perf

Multi-Instance GPU

• Up to 4 concurrent instances per GPU (QoS)

Compute

• 3rd Gen Tensor cores, Fast FP64

High Bandwidth Memory

Ultra-low latency

Power Efficient

Excellent Perf/W

Sparsity Acceleration

• Further 2X speed up

Multi Instance GPU - MIG

NVIDIA A100 & A30

Graphics/Compute GPU's

NVIDIA L40

Unprecedented visual computing performance for the data center

- Next-generation CUDA Cores
- 4th generation Tensor Cores
- 3rd generation RT Cores
- 48 GB GDDR6 GPU Memory with ECC
- 300W
- Secure root of trust

World's most powerful data center GPU for visual computing

NVIDIA Ampere Architecture CUDA Cores

Up to 2X FP32 throughput of previous generation*

2nd Generation RT Cores Up to 2X throughput of previous generation*

3rd Generation Tensor Cores Up to 5X throughput with TF32*

48 GB GDDR6 Memory Largest frame buffer for professional graphics

PCle Gen 4 2X bandwidth of PCIe Gen 3

- 3x Display Port 1.4 outputs**
- 2-way NVLink
- Quadro Sync support vGPU software support
- Hardware secure boot

*Performance measures gen to gen comparison of RTX 6000 to NVIDIA A40

** A40 is configured for virtualization by default with physical display connectors disabled. The display outputs can be enabled via management software too

High-performance graphics & video with AI

NVIDIA Ampere architecture 2nd gen RT Cores, 3rd gen Tensor Cores

24GB GDDR6 Memory 1.5X memory versus previous generation*

Improved Performance Up to 2.5X faster graphics and inferencing*

High-density, Power Efficient Single-slot form factor, 150W

Media Acceleration AV1 Decode, multiple 4K streams, 8K HDR

Flexibly accelerate multiple data center workloads Deploy virtual workstations & desktops or Al inference

Unprecedented user experience and density for graphics-rich VDI

Purpose-built for high user density

2X density versus previous generation¹

Lowest Cost per virtual workstation user

Affordable entry virtual workstations²

4x 16GB GDDR6 Memory

Up to 64 multimedia-rich virtual desktops per board Larger framebuffer per user for entry CAD virtual workstations³

Flexibility of heterogenous users

Simultaneously host different user profiles on one board

Highest Quality Video

Supports H.265 encode/decode, VP9, and AV1 decode

Multiuser performance for streaming video & multimedia

More than 2X encoder throughput¹

Latest NVIDIA Ampere architecture

2nd gen RT cores, 3rd gen Tensor Cores

Gen to gen comparison of NVIDIA M10 to NVIDIA A16
 Comparison of NVIDIA A16 vs. T4, RTX 6000, RTX 8000, and A40
 Gen to gen comparison of NVIDIA T4 to NVIDIA A16

Entry-level GPU bringing NVIDIA AI to any server

Compact, Entry-Level Inference

- Single slot LP, lower power fits any server
- Optimal for thermally constrained systems

Latest Ampere Architecture Features

• 3rd gen Tensor cores, 2nd gen RT cores, Secure RoT

Higher Intelligent Video Analytics (IVA) Performance

• 1.3X better performance vs T4

Up to 20X Higher Performance versus CPU

Speedups for AI inference and cloud gaming

3 Reasons to Transition from Previous Gen to A2

Superior value and lower power on NVIDIA Ampere architecture

NVIDIA Data Center GPU Comparison - Sept '22

	H100		A100		A30	A2	L40	A40	A10	A16
Design	Highest Perf Al, Big NLP, HPC, DA		High Perf Compute		Mainstream Compute	Entry-Level Small Footprint	Powerful Universal Graphics + Al	High Perf Graphics	Mainstream Graphics & Video with Al	High Density Virtual Desktop
Form Factor	SXM5	x16 PCle Gen5 2 Slot FHFL 3 NVLINK Bridge	SXM4	x16 PCle Gen4 2 Slot FHFL 3 NVLink Bridge	x16 PCIe Gen4 2 Slot FHFL 1 NVLink Bridge	x8 PCIe Gen4 1 Slot LP	x16 PCle Gen4 2 Slot FHFL	x16 PCle Gen4 2 Slot FHFL 1 NVLink Bridge	x16 PCle Gen4 1 slot LP	x16 PCle Gen4 2 Slot FHFL
Max Power	700W	350W	500W 300W		165W	40-60W	300W	300W	150W	250W
FP64 TC FP32 TFLOPS ²	67 67	51 51	19	.5 19.5	10 10	NA 4.5	NA TBD ³	NA 37	NA 31	NA 4x4.5
TF32 TC FP16 TC TFLOPS ²	989 1979	756 1513	31	2 624	165 330	18 36	TBD ³ TBD ³	150 300	125 250	4x18 4x36
FP8 TC INT8 TC TFLOPS/TOPS ²	3958 3958	3026 3026	NA 1248		NA 661	NA 72	TBD ³ TBD ³	NA 600	NA 500	NA 4x72
GPU Memory / Speed	80GB HBM3	80GB HBM2e	80GB HBM2e		24GB HBM2	16GB GDDR6	48GB GDDR6	48GB GDDR6	24GB GDDR6	4x 16GB GDDR6
Multi-Instance GPU (MIG)	Up 1	to 7	Up to 7		Up to 4		-	-	-	-
NVLink Connectivity	Up to 256	2	Up to 8	2	2		-	2	-	
Media Acceleration	7 JPEG Decoder 7 Video Decoder		1 JPEG Decoder 5 Video Decoder		1 JPEG Decoder 4 Video Decoder	1 Video Encoder 2 Video Decoder (+AV1 decode)	3 Video Encoder 3 Video Decoder 4 JPEG Decoder	1 Video 2 Video (+AV1	Encoder Decoder decode)	4 Video Encoder 8 Video Decoder (+AV1 decode)
Ray Tracing			-			Yes	Yes			
Transformer Engine	Ye	25	-			-		-	-	-
DPX Instructions	Ye	25		-		-		-	-	-
Graphics	For in-situ visualization (no NVIDIA vPC or RTX vWS)		(r	For in-situ visualization (no NVIDIA vPC or RTX vWS)		Good	Top-of-Line	Best	Better	Good
vGPU	Yes						Yes*		Yes	
Hardware Root of Trust	Internal and External			Internal with Option for External			Internal	Intern	al with Option for I	External
Confidential Computing	Yes		(1) -		-	-	-	-	-	-
NVIDIA AI Enterprise	Add-on	Included	Add-on			Add-on				

1. Supported on Azure NVIDIA A100 with reduced performance compared to A100 without Confidential Computing or H100 with Confidential Computing.

2. All Tensor Core numbers with sparsity. Without sparsity is ½ the value.

3. Precision TFLOP performance will be added in future update

Backup & Use Cases

ACCELERATING TIME TO TREATMENT

Contouring is a time-consuming but important task in radiation therapy. It helps radiologists determine how much radiation to use to treat tumors without damaging surrounding healthy organs.

Siemens Healthineers uses *syngo.via* RT Image Suite to automatically outline organs using Alassisted AutoContouring. Trained on >4.5M images on the GPU-powered Sherlock supercomputer, the Al model saves radiation oncologist time and accelerates radiation treatment for patients.

SIEMENS Healthineers

SIEMENS

PAVING THE WAY TO FUSION ENERGY

Fusion is the future of energy, but today's reactors cannot run for more than a few seconds without a disruption — which is not long enough to produce a net energy gain. Physicists need better tools to monitor and understand the plasma physics.

Scientists at Técnico Lisboa are using NVIDIA GPU-powered AI to visualize several phenomena —such as plasma heating and disruptions— inside the reactor and can predict time-to-disruption and its probability with 85% accuracy.

UNITED STATES POSTAL SERVICE

IMPROVING DELIVERY SERVICE

The US Postal Service is the world's largest delivery service with 485 million pieces of mail and parcels delivered daily.

To boost sorting efficiencies the USPS is implementing end-to-end AI technology from NVIDIA.

Expected to be fully operational in 200 facilities in 2020, the new GPU-powered AI system processes package data 10x faster and with higher accuracy.

THE BRAINS BEHIND SMART CITIES

Verizon's Smart Communities Group is on a mission to make cities safer, smarter and greener. Using NVIDIA Metropolis, an edge-to-cloud video platform for building smarter, faster AI-powered applications, Verizon is working to collect and analyze multiple streams of video data to improve traffic flow, enhance pedestrian safety, optimize parking and more.

verizon

MODERNIZING THE WAREHOUSE

In 2019 global ecommerce represented \$3.4 trillion — or 13.7% — of the \$25 trillion dollar retail sales market. Oberlo predicts this market share will grow to 17.5% by 2021.

With thousands of orders placed every hour, data scientists at Zalando, Europe's leading online fashion retailer, applied deep learning powered by NVIDIA GPUs to develop the Optimal Cart Pick algorithm.

The algorithm resulted in an 11% decrease in workers' travel time per item picked. The work is a good example of the efficiencies that AI can discover for e-commerce, manufacturing and other large-systems-based industries.

💿 nvidia. 🛛 👂 zalando

Backup Slides AMD

